

Fluid Sealing International 1230 Fourth Avenue Coraopolis, PA 15108 Office: 412-865-2101

Fax: 412-865-3212

Mechanical Seal Analysis (MSA)

Date	10/6/20	Pur
MSA #	2020-049	Sea
Inquiry #	I-20-0101	Sea
Customer	Anchor Seals	Sha
Customer Ref #	2194509	Dra
End User	USS Clairton Works	Sea
Pump House	TEC	Inb
Contact	Jason DiBiase	Inb
Phone	412-299-6900	Out
Salesperson	House	Out
		Ela

Pump Position	P-2152	
Seal Manufacturer	FSI	
Seal Model	MS1010MS0040-2418	
Shaft Size	2.50"	
Drawing #	FSI-2418	
Seal Serial #	02084	
Inboard Rotary Material	Tungsten Carbide	
Inboard Stationary Material	Tungsten Carbide	
Outboard Rotary Material	-	
Outboard Stationary Material	-	
Elastomers	Aflas / Viton	

General Seal Condition

Seal was returned covered in product.

Figure 1 & 2: Seal Assembly

Prepared By: B.Spithaler Phone: (412) 865-2101

Email: BSpithaler@worldfsi.net

Mechanical Seal Analysis

Seal Face Conditions

The Tungsten Carbide rotary face was found to have an even wear pattern.

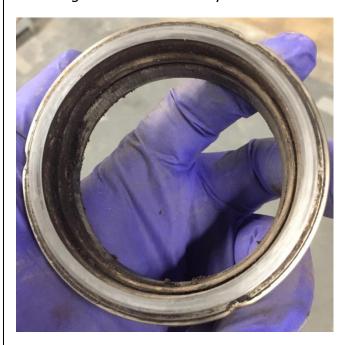


Figure 3: Rotary Face

The Tungsten Carbide stationary face was found cracked in two locations 180 degrees apart. The contact the stationary face made with the seal sleeve more than likely caused the face to break.

Figure 4: Stationary Face

Mechanical Seal Analysis

Metal Components, Springs, Pins

Most metal parts were in good condition. The OD of the seal sleeve shows signs of rubbing the ID of the stationary face.

Figure 6: Seal Components

The seal sleeve OD is worn from making contact with the ID of the tungsten carbide stationary face. The marks are the entire way around the sleeve OD. Shown in figure 8 is the seal sleeve reinserted into the gland without the rotary portion of the seal. This better shows where the stationary face (shown) and the seal sleeve (shown) made contact. You can even see the raised edge on the sleeve from the contact.

Figure 7 & 8: Seal Sleeve

Mechanical Seal Analysis

Failure Explanation/Recommendation

Failure Explanation: It appears that the seal gland dropped allowing the ID of the stationary to make contact with the sleeve OD. That rubbing eventually caused the stationary face to crack and break resulting in the seal failure. It should be noted that there were reports of gravel in the pump casing during pump disassembly. This debris and subsequent vibration may have aided the movement of the gland.

Recommendation: Follow all proper installation instructions and required torque specs when installing the seal on the pump. Also filter/ screen or otherwise find a way to eliminate large debris from entering the pump.

Additional Note: It was reported that the pump had a 7 month runtime.